Respuesta :
check the picture below.
now, if the width and length of the base are increased by 50%, then that means the sides are (150/100) * length and (150/100) * width, or 1.5 of each.
[tex]\bf A=\cfrac{1}{3}Bh\quad \begin{cases} B=l\cdot w\\ l=1.5l\\ w=1.5w\\ -----\\ 1.5l\cdot 1.5w\\ 1.5(lw)\\ 1.5B \end{cases}\implies A=\cfrac{1}{3}\cdot 1.5Bh\implies A=\cfrac{1}{3}\cdot \cfrac{15}{10}Bh \\\\\\ A=\cfrac{15}{30}Bh\implies A=\cfrac{1}{2}Bh[/tex]
now, if the width and length of the base are increased by 50%, then that means the sides are (150/100) * length and (150/100) * width, or 1.5 of each.
[tex]\bf A=\cfrac{1}{3}Bh\quad \begin{cases} B=l\cdot w\\ l=1.5l\\ w=1.5w\\ -----\\ 1.5l\cdot 1.5w\\ 1.5(lw)\\ 1.5B \end{cases}\implies A=\cfrac{1}{3}\cdot 1.5Bh\implies A=\cfrac{1}{3}\cdot \cfrac{15}{10}Bh \\\\\\ A=\cfrac{15}{30}Bh\implies A=\cfrac{1}{2}Bh[/tex]

Answer:
Volume of new pyramid is:
2.25bh
Step-by-step explanation:
Square pyramid means a cuboid whose length and breath are equal.
Length and breath of original pyramid=b
and height=h
Volume of original pyramid=b²h
Length and breath of new pyramid=1.5b
([tex]\dfrac{150}{100}\times b =1.5b[/tex])
and height=h
Volume of new pyramid=1.5b×1.5b×h
= 2.25bh
Hence, Volume of new pyramid is:
2.25bh