Respuesta :

[tex]\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad \sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------\\\\ \left( 16^{\frac{3}{2}} \right)^{\frac{1}{2}}\implies 16^{\frac{3}{2}\cdot \frac{1}{2}}\implies 16^{\frac{3}{4}}\qquad \boxed{16=2^4}\qquad (2^4)^{\frac{3}{4}}\implies 2^{4\cdot \frac{3}{4}} \\\\\\ 2^3\implies 8[/tex]

Answer:

Option B is correct that is 8.

Step-by-step explanation:

Given Expression : [tex](16^{\frac{3}{2}})^{\frac{1}{2}}[/tex]

We use a law of exponent here to simplify it,

[tex](x^a)^b=x^{ab}[/tex]

Consider,

[tex](16^{\frac{3}{2}})^{\frac{1}{2}}[/tex]

[tex]=16^{\frac{3}{2}\times\frac{1}{2}}[/tex]

[tex]=16^{\frac{3}{4}}[/tex]

[tex]=(2^4)^{\frac{3}{4}}[/tex]

[tex]=2^{4\times\frac{3}{4}}[/tex]

[tex]=2^3[/tex]

[tex]=8[/tex]

Therefore, Option B is correct that is 8.