Respuesta :
We can use the quadratic formula to solve the quadratic equation
Quadratic formula is given by
[tex]x_1= \frac{-b+ \sqrt{b^2-4ac} }{2a} [/tex], and
[tex]x_2= \frac{-b- \sqrt{b^2-4ac} }{2a} [/tex]
We are given [tex]2x^2+3x-8=0[/tex], where:
[tex]a=2[/tex], [tex]b=3[/tex], and [tex]c=-8[/tex]
Substitute the values of [tex]a, b, c[/tex] into the formula:
[tex]x_1= \frac{-3+ \sqrt{3^2-4(2)(-8)} }{2(2)}=1.39 [/tex] (rounded to two decimal places)
[tex]x_2= \frac{-3- \sqrt{3^2-4(2)(-8)} }{2(2)}=-2.89 [/tex] (rounded to two decimal places)
The positive solution is x = 1.39
Quadratic formula is given by
[tex]x_1= \frac{-b+ \sqrt{b^2-4ac} }{2a} [/tex], and
[tex]x_2= \frac{-b- \sqrt{b^2-4ac} }{2a} [/tex]
We are given [tex]2x^2+3x-8=0[/tex], where:
[tex]a=2[/tex], [tex]b=3[/tex], and [tex]c=-8[/tex]
Substitute the values of [tex]a, b, c[/tex] into the formula:
[tex]x_1= \frac{-3+ \sqrt{3^2-4(2)(-8)} }{2(2)}=1.39 [/tex] (rounded to two decimal places)
[tex]x_2= \frac{-3- \sqrt{3^2-4(2)(-8)} }{2(2)}=-2.89 [/tex] (rounded to two decimal places)
The positive solution is x = 1.39
Answer: the guy above is right for anyone looking at this and was sceptical
Step-by-step explanation: