Which shows one way to determine the factors of x^3 – 12x^2 – 2x + 24 by grouping?
a. x(x^2 – 12) + 2(x2 – 12)
b. x(x^2 – 12) – 2(x2 – 12)
c. x^2(x – 12) + 2(x – 12)
d. x^2(x – 12) – 2(x – 12)

Respuesta :

[tex]x^3-12x^2-2x+24=x^2\cdot x-x^2\cdot12-2\cdot x-2\cdot(-12)\\\\=\underline{x^2(x-12)-2(x-12)}=(x-12)(x^2-2)\\\\Answer:\boxed{d}[/tex]

The answer is D on e2020.

x^2(x-12)-2(x-12)

Have a great day