Respuesta :
[tex]g(h(x))=\sqrt{x^2-6-5}=\sqrt{x^2-11}\\
g(h(6))=\sqrt{6^2-11}=\sqrt{36-11}=\sqrt{25}=5[/tex]
a)
[tex]h(x)[/tex] is the input for [tex]g(x)[/tex], so [tex]h(x)[/tex] must be first
b)
It's impossible for [tex]g(h(x)=\sqrt{x^2-11}[/tex], because its value is always non-negative for any x. Let's see what about [tex]h(g(x))[/tex].
[tex]h(g(x))=(\sqrt{x-5})^2-6=x-5-6=x-11[/tex]
The result is a non-constant linear function, so its value can be any real number, including -5. You can calculate for what x it's equal to -5.
[tex]x-11=-5\\ x=6[/tex]
[tex]x-11=-5\\ x=6[/tex]
a)
[tex]h(x)[/tex] is the input for [tex]g(x)[/tex], so [tex]h(x)[/tex] must be first
b)
It's impossible for [tex]g(h(x)=\sqrt{x^2-11}[/tex], because its value is always non-negative for any x. Let's see what about [tex]h(g(x))[/tex].
[tex]h(g(x))=(\sqrt{x-5})^2-6=x-5-6=x-11[/tex]
The result is a non-constant linear function, so its value can be any real number, including -5. You can calculate for what x it's equal to -5.
[tex]x-11=-5\\ x=6[/tex]
[tex]x-11=-5\\ x=6[/tex]
a) To get a final output of 5 , she must first input 6 into machine h(x) , then the result from machine h(x) is input back to machine g(x).
b) It is possible to get a final output of -5. It could be done by first input 6 into machine g(x) , then the result from machine g(x) is input back to machine h(x).
Further explanation
Function is a relation which each member of the domain is mapped onto exactly one member of the codomain.
There are many types of functions in mathematics such as :
- Linear Function → f(x) = ax + b
- Quadratic Function → f(x) = ax² + bx + c
- Trigonometric Function → f(x) = sin x or f(x) = cos x or f(x) = tan x
- Logarithmic function → f(x) = ln x
- Polynomial function → f(x) = axⁿ + bxⁿ⁻¹ + ...
If function f : x → y , then inverse function f⁻¹ : y → x
Let us now tackle the problem!
This problem is about Composition of Functions.
Question a:
Given:
[tex]g(x) = \sqrt{x - 5}[/tex]
[tex]h(x) = x^2 - 6[/tex]
[tex]( h \circ g )( x ) = h ( g ( x ) )[/tex]
[tex]( h \circ g )( x ) = h ( \sqrt {x - 5} )[/tex]
[tex]( h \circ g )( x ) = (\sqrt {x - 5})^2 - 6[/tex]
[tex]( h \circ g )( x ) = x - 5 - 6[/tex]
[tex]( h \circ g )( x ) = x - 11[/tex]
[tex]( h \circ g )( 6 ) = 6 - 11[/tex]
[tex]\large {\boxed {( h \circ g )( 6 ) = -5 } }[/tex]
[tex]( g \circ h )( x ) = g ( h ( x ) )[/tex]
[tex]( g \circ h )( x ) = g ( x^2 - 6 )[/tex]
[tex]( g \circ h )( x ) = \sqrt {( x^2 - 6 ) - 5 }[/tex]
[tex]( g \circ h )( x ) = \sqrt { x^2 - 11 }[/tex]
[tex]( g \circ h )( 6 ) = \sqrt { 6^2 - 11 }[/tex]
[tex]( g \circ h )( 6 ) = \sqrt { 25 }[/tex]
[tex]\large {\boxed {( g \circ h )( 6 ) = 5 } }[/tex]
To get a final output of 5 , she must first input 6 into machine h(x) , then the result from machine h(x) is input back to machine g(x).
Question b:
From the results above , it is possible to get a final output of -5.
It could be done by first input 6 into machine g(x) , then the result from machine g(x) is input back to machine h(x).
Learn more
- Inverse of Function : https://brainly.com/question/9289171
- Rate of Change : https://brainly.com/question/11919986
- Graph of Function : https://brainly.com/question/7829758
Answer details
Grade: High School
Subject: Mathematics
Chapter: Function
Keywords: Function , Trigonometric , Linear , Quadratic
