Respuesta :

[tex]h(x)=\dfrac{f(x)}{g(x)}=\dfrac{x^2+x-20}{x+5}=\dfrac{x^2+x+4x-4x-20}{x+5}=\\\\\\= \dfrac{x^2+5x-4x-20}{x+5}=\dfrac{x(x+5)-4(x+5)}{x+5}=\dfrac{(x+5)(x-4)}{x+5}=\\\\\\=\boxed{x-4}[/tex]

We see, that g(x) is in denominator, so:

[tex]g(x)\neq0\\\\x+5\neq0\\\\\boxed{x\neq-5}[/tex]

and the domain of [tex]h(x)[/tex] is the set of all real numbers without [tex]x=-5[/tex].