Respuesta :

Let's solve your equation step-by-step.

2x^2+x+2=0

Use quadratic formula with a=2, b=1, c=2.

x = -b ± (sqrt) b^2 - 4ac / 2a

x = -(1) ± (sqrt) (1)^2 - 4(2)(2) / 2(2)

x = -1 ± (sqrt) -15 / 4

So the answer is the last one

x = 1 ± i (sqrt) 15 / 4

Answer:

[tex]x=\frac{-1+-i\sqrt{15}}{4}[/tex]

Step-by-step explanation:

[tex]2x^2+x+2=0[/tex]

Apply quadratic formula to solve for x

[tex]x=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

a=2, b= 1, c=2

Plug in the value in the quadratic formula

[tex]x=\frac{-1+-\sqrt{1^2-4(2)(2)}}{2(2)}[/tex]

[tex]x=\frac{-1+-\sqrt{-15}}{4}[/tex]

Square root of -1 is 'i'

[tex]x=\frac{-1+-i\sqrt{15}}{4}[/tex]