Is this function even, odd, or neither?

Answer:
The given function is neither even nor odd.
Step-by-step explanation:
A function is an even function if
[tex]f(-x)=f(x)[/tex]
A function is an odd function if
[tex]f(-x)=-f(x)[/tex]
From the given graph it is clear that graph is passing though the points (-3,2), (-1,2), (0,1/2), (1/2,0), (1,-1), (2,-1) and (3,1).
Here,
[tex]f(3)=1[/tex]
[tex]f(-3)=2[/tex]
[tex]f(-3)\neq f(3)[/tex] and [tex]f(-3)\neq -f(3)[/tex]
Since [tex]f(-x)\neq f(x)[/tex] and [tex]f(-x)\neq -f(x)[/tex], therefore the given function is neither even nor odd.