Respuesta :

The difference of two cubes is factored by
x^3-y^3=(x-y)(x^2+xy+y^2)

In this case it would be

C) 

Answer:

Correct option is:

C. [tex](x-\sqrt{3})(x^2+3+x\sqrt{3} )[/tex]

Step-by-step explanation:

x^3-3sqrt(3)

=  [tex]x^3-3\sqrt{3} \\\\=x^3-\sqrt{3}^3[/tex]

= [tex](x-\sqrt{3})(x^2+3+x\sqrt{3} )[/tex]

(since, [tex]a^3-b^3=(a-b)(a^2+b^2+ab)[/tex])

Hence, the correct option is:

   C.    [tex](x-\sqrt{3})(x^2+3+x\sqrt{3} )[/tex]