Respuesta :
we have
[tex]\left|2x-6\right|<4[/tex]
Solve the inequality
First case
[tex]+(2x-6)<4[/tex]
[tex]2x<4+6[/tex]
[tex]2x<10[/tex]
[tex]x<5[/tex]
The solution of the first case is the interval---------> (-∞,5)
All real numbers less than [tex]5[/tex]
Second case
[tex]-(2x-6)<4[/tex]
[tex]-2x<4-6[/tex]
[tex]-2x<-2[/tex]
[tex]-x<-1[/tex]------->[tex]x>1[/tex]
The solution of the second case is the interval---------> (1,∞)
All real numbers greater than [tex]1[/tex]
The solution of the inequality [tex]\left|2x-6\right|<4[/tex]
(-∞,5) ∩ (1,∞)--------> [tex](1,5)[/tex]
Using a graphing tool
The answer in the attached figure

The solution to the inequality expression is 0<x<6
Inequality expression
Given the function
|2x - 6| < 6
The Modulus of the function can either be positive or negative
If the inequality is positive
2x - 6 < 6
Add 6 to both sides
2x - 6 + 6 = 6 +6
2x < 12
x < 12/2
x < 6
If the inequality is negative
-2x + 6 < 6
-2x < 0
x > 0
Hence the solution to the inequality expression is 0<x<6
Learn more on inequality here: https://brainly.com/question/22354790