Respuesta :

we have

[tex]\left|2x-6\right|<4[/tex]

Solve the inequality

First case

[tex]+(2x-6)<4[/tex]

[tex]2x<4+6[/tex]

[tex]2x<10[/tex]

[tex]x<5[/tex]

The solution of the first case is the interval---------> (-∞,5)

All real numbers less than [tex]5[/tex]

Second case

[tex]-(2x-6)<4[/tex]

[tex]-2x<4-6[/tex]

[tex]-2x<-2[/tex]

[tex]-x<-1[/tex]------->[tex]x>1[/tex]

The solution of the second case is the interval---------> (1,∞)

All real numbers greater than [tex]1[/tex]

The solution of the inequality [tex]\left|2x-6\right|<4[/tex]

(-∞,5) ∩ (1,∞)--------> [tex](1,5)[/tex]

Using a graphing tool

The answer in the attached figure

Ver imagen calculista

The solution to the inequality expression is 0<x<6

Inequality expression

Given the function

|2x - 6| < 6

The Modulus of the function can either be positive or negative

If the inequality is positive

2x - 6 < 6

Add 6 to both sides

2x - 6 + 6 = 6 +6

2x < 12

x < 12/2

x < 6

If the inequality is negative

-2x + 6 < 6

-2x < 0

x > 0

Hence the solution to the inequality expression is 0<x<6

Learn more on inequality here: https://brainly.com/question/22354790