Devin started the work shown to solve for the unknown angle measures. 8x – 1 + 9x – 6 = 180 17x – 7 = 180 17x = 187 What are the measures of angles Q and R?

Respuesta :

Answer:

[tex]m<R=87\°[/tex]

[tex]m<Q=93\°[/tex]

Step-by-step explanation:

we have that

[tex]m<R=(8x-1)\°[/tex]

[tex]m<Q=(9x-6)\°[/tex]

[tex]m<R+m<Q=180\°[/tex] ------> by supplementary angles

Substitute the values and solve for x

[tex]8x-1+9x-6=180\°[/tex]

[tex]17x-7=180\°[/tex]

[tex]17x=187\°[/tex]

[tex]x=11\°[/tex]

Find the value of angle R

[tex]m<R=(8*11-1)\°=87\°[/tex]

Find the value of angle Q

[tex]m<Q=(9*11-6)\°=93\°[/tex]

The measure of angle Q and R can be obtained by supplementary angle. The supplementary angle is defined as the addition of two angle is [tex]180^{\circ}[/tex].

The angle Q is [tex]93^{\circ}[/tex] and angle R is [tex]87^{\circ}[/tex].

Given:

The equation for unknown angle is,

[tex]8x -1 + 9x - 6 = 180[/tex]

The supplementary angle is,

[tex]\angle R+\angle Q=180^{\circ}[/tex]

Compare the above equation.

[tex]\angle R=(8x-1)^{\circ}\\\angle Q=(9x-6)^{\circ}[/tex]

Solve the given expression.

[tex]\begin{aligned}8x -1 + 9x -6 &= 180\\ 17x - 7 &= 180 \\17x &= 187 \\x&=11\\\end[/tex]

Calculate the Angle R.

[tex]\angle R=(8\times 11-1)\\\angle R=87^{\circ}[/tex]

Calculate the Angle Q.

[tex]\angle Q=(9\times 11-6)\\\angle Q=93^{\circ}[/tex]

Thus, the angle Q is [tex]93^{\circ}[/tex] and angle R is [tex]87^{\circ}[/tex].

Learn more about supplementary angle is here:

https://brainly.com/question/15613251