Respuesta :

tan tetha at quadrant III would be [tex] \frac{ \sqrt{3} }{3} [/tex]

Answer:  [tex]\tan \theta=\dfrac{1}{\sqrt3}.[/tex]

Step-by-step explanation:  Given that

[tex]\sin\theta=-\dfrac{1}{2}[/tex] and [tex]\theta[/tex] lies in Quadrant III.

We are to find the value of [tex]\tan \theta.[/tex]

We will be using the following trigonometric identities:

[tex](i)~sin^2\theta+\cos^2\theta=1,\\\\(ii)~\dfrac{\sin\theta}{\cos{\theta}}=\tan \theta.[/tex]

We have

[tex]\tan\theta\\\\\\=\dfrac{\sin\theta}{\cos\theta}\\\\\\=\dfrac{\sin\theta}{\pm\sqrt{1-\sin^2\theta}}\\\\\\=\pm\dfrac{-\frac{1}{2}}{\sqrt{1-\left(\frac{1}{2}\right)^2}}\\\\\\=\pm\dfrac{\frac{1}{2}}{\sqrt{1-\frac{1}{4}}}\\\\\\=\pm\dfrac{\frac{1}{2}}{\frac{\sqrt3}{2}}\\\\\\=\pm\dfrac{1}{\sqrt3}.[/tex]

Since [tex]\theta[/tex] lies in Quadrant III, so tangent will be positive.

Thus,

[tex]\tan \theta=\dfrac{1}{\sqrt3}.[/tex]