Respuesta :

Answer:

The dimensions of the original cube are 16 in x 16 in x 16 in

Step-by-step explanation:

Let

x ----> the length side of the original cube

The surface area of the cube is equal to

[tex]SA=6b^2[/tex]

where

b is the length side of the cube

we know that

The dimensions of a cube are reduced by 4 inches on each side and the surface area of the new cube is 864 square inches

so

The length side of the new cube is

[tex]b=(x-4)\ in[/tex]

substitute in the formula of surface area

[tex]SA=6(x-4)^2[/tex]

[tex]SA=864\ in^2[/tex]

so

[tex]6(x-4)^2=864[/tex]

Simplify

[tex](x-4)^2=144[/tex]

take square root both sides

[tex](x-4)=(+/-)12[/tex]

[tex]x=4(+/-)12[/tex]

[tex]x=4(+)12=16\ in[/tex]

[tex]x=4(-)12=-8\ in[/tex] ----> the length side cannot be a negative number

therefore

The dimensions of the original cube are 16 in x 16 in x 16 in