Respuesta :

for have alook the photo
Ver imagen Pritam14

Answer:

Option A- 60°            

Step-by-step explanation:

Given : Function - [tex]4cos^2x-1=0[/tex]

To solve the function

Step 1 - Write the function

[tex]4cos^2x-1=0[/tex]

Step 2- Add 1 both side

[tex]4cos^2x=1[/tex]

Step 3- Divide 4 both side

[tex]cos^2x=\frac{1}{4}[/tex]

Step 4 - Taking root both side

[tex]cosx=\sqrt{\frac{1}{4}}[/tex]

Step 5 - solve

[tex]cosx=\pm{\frac{1}{2}}[/tex]

Either [tex]cosx={\frac{1}{2}}[/tex] or [tex]cosx=-{\frac{1}{2}}[/tex]

When [tex]cosx={\frac{1}{2}}[/tex]

            [tex]\rightarrow cosx={cos\frac{\pi}{3}}[/tex]

            [tex]\rightarrow x={\frac{\pi}{3}} or 60^{\circ}[/tex]

or when  [tex]cosx=-{\frac{1}{2}}[/tex]

               [tex]\rightarrow cosx={cos(\pi-\frac{\pi}{3})}[/tex]

            [tex]\rightarrow x={\frac{2\pi}{3}} or 120^{\circ}[/tex]

Therefore, Option A is correct solution of function is at 60°.