Increase from 491,675 in the year 2000 to 782,341 in 2010.
A. The solution for the exponential growth rate, B. Write the exponential growth function and C What should the population be in 2016.
A. 782341/491675 = 1.5911750648294096710225250419484, or a growth rate of 59% over 10 years. So:(1+k)^10 = 1.5911750648294096710225250419484ln (1+k)^10 = ln 1.591175064829409671022525041948410 ln(1+k) = ln 1.5911750648294096710225250419484ln(1+k) = ln 1.5911750648294096710225250419484/10 = 0.04644727777645335179835425806392e^0.04644727777645335179835425806392 = 1+kk = 1.0475428488243655419718940009655, or 4.75428488243655419718940009655% growth rate per year.
B. Population year t = 491675 x (1.0475)^(t-2000)
C. Population in 2016 = 491675 x (1.0475)^16 = 1033100.64 people