Respuesta :

rgwoot
Calculate the average rate of change for the function f(x) = x4 + 3x3 − 5x2 + 2x − 2, from x = −1 to x = 1.
Ver imagen rgwoot

Answer:

The rate is change is 5.

Step-by-step explanation:

Given : [tex]f(x) = x^4 + 3x^3 -5x^2 + 2x-2[/tex]

To find : Calculate the average rate of change for the function from x = -1 to x = 1 ?

Solution :

The rate of change of function from a to b is given by,

[tex]r=\frac{f(b)-f(a)}{b-a}[/tex]

Here, [tex]f(x) = x^4 + 3x^3 -5x^2 + 2x-2[/tex] and a=-, b=1

[tex]f(1) = 1^4 + 3(1)^3 -5(1)^2 + 2(1)-2[/tex]

[tex]f(1) =1+3-5+ 2-2[/tex]

[tex]f(1) =-1[/tex]

[tex]f(-1) = (-1)^4 + 3(-1)^3 -5(-1)^2 + 2(-1)-2[/tex]

[tex]f(-1) =1-3-5-2-2[/tex]

[tex]f(-1) =-11[/tex]

Substitute in the formula,

[tex]r=\frac{-1-(-11)}{1-(-1)}[/tex]

[tex]r=\frac{10}{2}[/tex]

[tex]r=5[/tex]

Therefore, the rate is change is 5.