Respuesta :
The formula for exponential decay is P_1=P_0*e^-kt. If the half-life is 5730 years, then:
.5=e^-5730k
ln .5=ln e^-5730k=-5730k ln e= -5730k
k=.00012096809
0.125=e^.00012096809t
ln 0.125=ln e^.00012096809t=.00012096809t ln e=-0.00012096809t
t=17,190 years
.5=e^-5730k
ln .5=ln e^-5730k=-5730k ln e= -5730k
k=.00012096809
0.125=e^.00012096809t
ln 0.125=ln e^.00012096809t=.00012096809t ln e=-0.00012096809t
t=17,190 years
The half-life of carbon-14 is 5730 years and It takes 7/8 of a sample of carbon-14 to decay is 17190 years.
We have given,
The half-life of carbon-14 is 5730 years.
What is the formula of exponential decay?
The formula for exponential decay is,
[tex]P_1=P_0*e^{-kt}.[/tex]
If the half-life is 5730 years, then
[tex]0.5=e^{-5730k}[/tex]
[tex]ln .5=ln e^{-5730k}=-5730k ln e= -5730k[/tex]
[tex]k=0.00012096809[/tex]
[tex]0.125=e^{0.00012096809t}[/tex]
ln 0.125=ln e^.00012096809t
=.00012096809t ln e
=-0.00012096809t
t=17,190 years
t=17,190 years
Therefore, it takes for 7/8 of a sample of carbon-14 to decay is 17190 years.
To learn more about the decay visit:
https://brainly.com/question/25802424 #SPJ3