Respuesta :

The answer is:  "x = 10 , y = 30" ;  or; write as:  " (10, 30) " .
___________________________________________________________
Explanation:
___________________________________________________________
Given:  
___________________________________________________________
 " x + y = 40 "; 

and:  " 0.08x + 0.03y = 1.7 " ;
 
Find the solutions set (the "x-value" and the "y-value"} for this system of equations ;  {which can be written as:  " (x, y) " ; as the "solution set" for the system of equations.}.
_________________________________________________________
NOTE:
_________________________________________________________
For the second equation given:

    " 0.08x + 0.03y = 1.7 " ;

 → Multiply EACH SIDE of the equation by "100" ;
          to get rid of the "decimal values" ; 

→  100 * {0.08x + 0.03y} = 100* {1.7} ;

to get:   " 8x + 3y = 170 " ; 
_______________________________________________________
So, we have:  

" 8x + 3y = 170 " ;  AND:

" x + y = 40" ;
___________________________________________________
Let us take:  "x + y = 40 " ; and solve for "x" (in terms of "y"); and then plug that obtained value {i.e. "substitution"} for "x" in the other equation:
___________________________________________________
    x + y = 40 ; 

Subtract "y" from each side of the equation ; 

    x + y − y = 40 − y ; 

To get: 

   x = 40 
− y ; 
____________________________________________
Now, take the "other" equation in the system:

       →  " 8x + 3y = 170 " ;

And substitute:  "(40 − y)" for "x" ;  & then solve for "x" ;

       →   8(40 − y) + 3y = 170 ; 
_________________________________________________
Note:  We have the expression:  "8(40− y)" ; 
_________________________________________________
Note the "distributive property of multiplication:
_________________________________________________
     a(b + c) = ab +  ac ;

     a(b − c) = ab − ac ;
_________________________________________________

So;  " 8(40 − y) " =  (8*40) − (8*y) = "320 − 8y" ;
_________________________________________________
And rewrite:   " 8(40 − y) + 3y = 170 " ;  
     →  {by substituting:  "320 − 8y" for:  "8(40 − y)"  ; as follows:
_________________________________________________
     →  320 − 8y + 3y = 170 ; 

Combine the "like terms" on the "left-hand side" of the equation:

  -8y + 3y = -5y ; 

And rewrite the equation:

320 − 5y = 170 ; 

Subtract "320" from each side of the equation: 

320 − 5y − 320 = 170 − 320 ;

to get: 

   -5y = -150  ; 

Divide EACH SIDE of the equation by "-5" ;
   to isolate "y" on one side of the equation; & to solve for "y" ;

   -5y / -5 = -150 / -5 ; 

to get:

y = 30 ; 

To solve for "x";

x + y = 40 ;

x = 40 − y ;  

Plug in:  "30" for "y" ;  to solve for "x" ;

x = 40 − (30)  ;

x = 10 ; 
__________________________
So; the answer is:  "x = 10, y = 30": ;  or, write as:  " (10, 30)" .
_____________________________________________________
To confirm our answer:
_____________________________________________________
Let us plug in our values for "x" and 'y" ; into the equation:

" (0.08)x + (0.03)y = 1.7 " ;  to see if the equation holds true; 

  → (0.08)*(10)  + (0.03)(30) = ?  0.9 ? ; 

  → 0.8  +  0.9 = ? 1.7 ?   YES!
______________________________________________________