Lesson 10: Congruent Triangles ._.


Answer:
Step-by-step explanation:
The congruence [tex]MN \cong PR[/tex] is false, because they are not corresponding sides.
The corresponding sides are:
[tex]MN \cong PQ\\NO \cong QR\\MO \cong PR[/tex]
On the other hand, if [tex]\triangle ABC \cong \triangle PQR[/tex], then [tex]\angle Q \cong \angle B[/tex].
We know that [tex]m\angle Q=8v-6[/tex] and [tex]m \angle B=3v+4[/tex], but they are equal, so
[tex]8v-6=3v+4\\8v-3v=6+4\\5v=10\\v=2[/tex]
Then,
[tex]m\angle Q=8v-6=8(2)-6=16-6=10\\m \angle B=3v+4=3(2)+4=6+4=10[/tex]
Therefore, those angles are equal to 10°.
In the second image, the given triangles have the following congruence:
[tex]\angle DAB \cong \angle CAB\\\angle DBA \cong \angle CBA[/tex]
Also, they have side AB in common.
Therefore, [tex]\triangle ABC \cong \triangle ABD[/tex], by ASA.