Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = 0[/tex]

General Formulas and Concepts:

Calculus

Limits

  • Limit Rule [Variable Direct Substitution]:                                                     [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Special Limit Rule [L’Hopital’s Rule]:                                                                     [tex]\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x}[/tex]

Step 2: Find

  1. Special Limit Rule [L'Hopital's Rule]:                                                           [tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x)'}[/tex]
  2. Rewrite [Derivative Rule - Addition/Subtraction]:                                       [tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{(1)' - (\cos x)'}{(x)'}[/tex]
  3. Basic Power Rule:                                                                                         [tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{0 - (\cos x)'}{1}[/tex]
  4. Simplify:                                                                                                         [tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} -(\cos x)'[/tex]
  5. Trigonometric Differentiation:                                                                       [tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \sin x[/tex]
  6. Evaluate Limit [Limit Rule - Variable Direct Substitution]:                           [tex]\displaystyle \lim_{x \to 0} \frac{1 - \cos x}{x} = 0[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Advanced Limit Techniques