Evaluate 8a+3b-10+c^28a+3b−10+c ​2 ​​ 8, a, plus, 3, b, minus, 10, plus, c, start superscript, 2, end superscript when a=2a=2a, equals, 2, b=5b=5b, equals, 5, and c=4c=4c, equals, 4.

Respuesta :

Answer:

The given expression  [tex]8a+3b-10+c^2[/tex] at a = 2 , b = 5 and c = 4  is 37.

Step-by-step explanation:

Given : expression [tex]8a+3b-10+c^2[/tex]

We have to evaluate the given expression  [tex]8a+3b-10+c^2[/tex] at a = 2 , b = 5 and c = 4

Consider the given expression  [tex]8a+3b-10+c^2[/tex]

Substitute, a = 2 , b= 5 and c = 4

We have,

[tex]=8(2)+3(5)-10+(4)^2[/tex]

Simplify, we have,

[tex]=16+13-10+16[/tex]

We get,

= 37

So,  The given expression  [tex]a+3b-10+c^2[/tex] at a = 2 , b = 5 and c = 4  is 37.