Respuesta :
Plan: Use Q = m · c · ΔT three times. Hot casting cools ΔT_hot = 500°C -
Tf. Cold water and steel tank heat ΔT_cold = Tf - 25°C. Set Q from hot
casting cooling = Q from cold tank heating.
here
m_cast · c_steel · ΔT_hot = (m_tank · c_steel + m_water · c_water) · ΔT_cold
m_cast · c_steel · (500°C - Tf) = (m_tank · c_steel + m_water · c_water) · (Tf - 25°C)
2.5 kg · 0.50 kJ/(kg K°) · (500°C - Tf) = (5 kg· 0.50 kJ/(kg K°) + 40 kg· 4.18 kJ/(kg K°)) · (Tf - 25°C)
Solve for Tf, remember that K° = C° (i.e. for ΔT's)
here
m_cast · c_steel · ΔT_hot = (m_tank · c_steel + m_water · c_water) · ΔT_cold
m_cast · c_steel · (500°C - Tf) = (m_tank · c_steel + m_water · c_water) · (Tf - 25°C)
2.5 kg · 0.50 kJ/(kg K°) · (500°C - Tf) = (5 kg· 0.50 kJ/(kg K°) + 40 kg· 4.18 kJ/(kg K°)) · (Tf - 25°C)
Solve for Tf, remember that K° = C° (i.e. for ΔT's)
Answer:
26.6C
Explanation:
Using an energy balance:
Decrease in internal energy of casting must lead to an increase in internal energy of the tank and water, assuming that no heat flows out of the tank - perfectly insulated.
[tex]m_{casting}*C_{p,casting}*(T_{casting} - T_{final})= m_{water}*C_{p,water}*(T_{final} - T_{water}) + m_{tank}*C_{p,tank}*(T_{final} - T_{tank})[/tex]
[tex]2*0.5*(500 - T_{final})= 70*4.18*(T_{final} - 25) + 5*0.5*(T_{final} - 25)\\\\(1+2.5+292.6)*T_{final} = 500+7315+62.5\\\\T_{final} = 26.6C[/tex]