Answer:
x=1
Step-by-step explanation:
[tex]3log_2(2x)= 3[/tex]
We need to solve for x
First we divide both sides by 3
[tex] log_2(2x)= 1[/tex]
We convert log form into exponential form
If [tex]log_b(x)= a[/tex] then b^a = x
[tex] log_2(2x)= 1[/tex]
2^1 = 2x
2=2x
divide by 2 on both sides
x=1
we need to verify our solution
[tex]3log_2(2x)= 3[/tex]
[tex]3log_2(2(1))= 3[/tex]
3=3 --> true, so x=1 is our solution