Answer:
[tex]\[y+2x=-8\][/tex]
Step-by-step explanation:
The equation of a line passing through two given points (x1,y1) and (x2,y2) is given by:
[tex]\[\frac{(x-x1)}{(x2-x1)}=\frac{(y-y1)}{(y2-y1)}\][/tex]
In this case, x1=-8,y1=8,x2=1,y2=-10
Substituting these values in the equation:
[tex]\[\frac{(x-(-8))}{(1-(-8))}=\frac{(y-8)}{(-10-8)}\][/tex]
Simplifying,
[tex]\[\frac{(x+8)}{(1+8)}=\frac{(y-8)}{(-18)}\][/tex]
=> [tex]\[\frac{(x+8)}{9}=\frac{(y-8)}{(-18)}\][/tex]
=> [tex]\[\frac{(x+8)}{9}*(-18)=(y-8)\][/tex]
=> [tex]\[-2x-16=y-8\][/tex]
=> [tex]\[-8=y+2x\][/tex]