Respuesta :

Answer:

[tex]y=x^2-4x+1[/tex]

First option is correct.

Step-by-step explanation:

From the given table, we take three points (0,1), (1,-2) and (2,-3)

Now, let the  quadratic equation is [tex]y=ax^2+bx+c[/tex]

Use the first point (0,1)

[tex]1=a(0)^2+b(0)+c\\\\c=1[/tex]

Thus, the equation becomes [tex]y=ax^2+bx+1[/tex]

Now, use the point (1,-2)

[tex]-2=a(1)^2+b(1)+1\\\\a+b+1=-2\\\\a+b=-3...(i)[/tex]

Now, use the point (2,-3)

[tex]-3=a(2)^2+b(2)+1\\\\4a+2b+1=-3\\\\4a+2b=-4\\\\2a+b=-2...(ii)[/tex]

Subtract (i) and (ii)

a-2a= -3+2

-a = -1

a = 1

Now, substituting this value in (i)

1 + b = -3

b = -3-1

b = -4

Therefore, the quadratic equation is [tex]y=x^2-4x+1[/tex]

First option is correct.