Are the two triangles below similar?


A) Yes; they have proportional corresponding sides
B) No; they do not have proportional corresponding sides
C)Yes; they have congruent corresponding angles
D) No; they do not have congruent corresponding angles

Are the two triangles below similar A Yes they have proportional corresponding sides B No they do not have proportional corresponding sides CYes they have congr class=

Respuesta :

C)Yes; they have congruent corresponding angles

Answer:

Option C

Yes, they have congruent corresponding angles.

Explanation:

In ΔMNO

Given: [tex]\angle MNO = 105^{\circ}[/tex] ,  [tex]\angle NMO = 48^{\circ}[/tex]

The sum of measures of these three angles of  triangle MNO is 180 degree.

Then;

[tex]\angle MNO + \angle NMO + \angle MON= 180^{\circ}[/tex]

[tex]105^{\circ}+ 48^{\circ} + \angle MON= 180^{\circ}[/tex]

or

[tex]153^{\circ} + \angle MON= 180^{\circ}[/tex]

Simplify:

[tex]\angle MON= 180^{\circ}-153^{\circ}= 27^{\circ}[/tex]

Similarly,

In a given triangle PQR; find angle QPR

[tex]\angle PQR + \angle PRQ + \angle QPR= 180^{\circ}[/tex]

Substitute the value of angles PQR , angle PRQ from the given figure in above equation, we have

[tex]105^{\circ}+ 27^{\circ} + \angle QPR= 180^{\circ}[/tex]

or

[tex]132^{\circ} + \angle QPR= 180^{\circ}[/tex]

Simplify:

[tex]\angle QPR= 180^{\circ}-132^{\circ}= 48^{\circ}[/tex]

Then;

In  ΔMNO and  ΔPQR

[tex]\angle MNO =\angle PQR = 105^{\circ}[/tex]

[tex]\angle NMO =\angle QPR = 48^{\circ}[/tex]

[tex]\angle MON =\angle PRQ= 27^{\circ}[/tex]

If all pairs of corresponding angles in a pair of triangles are congruent, then the triangles are Similar.

Therefore, ΔMNO[tex]\sim[/tex]ΔPQR .