Respuesta :
(x + 1)(x^2 + 3x + 2) =
x(x^2 + 3x + 2) + 1(x^2 + 3x + 2) =
x^3 + 3x^2 + 2x + x^2 + 3x + 2 =
x^3 + 4x^2 + 5x + 2 <====
x(x^2 + 3x + 2) + 1(x^2 + 3x + 2) =
x^3 + 3x^2 + 2x + x^2 + 3x + 2 =
x^3 + 4x^2 + 5x + 2 <====
(x+1)(x^2+3x+2)
Distribute each term into the other parenthesis
x(x² + 3x + 2) = x³ + 3x² + 2x
1(x² + 3x + 2) = x² + 3x + 2
Combine like terms
x³ + 3x² + x² + 3x + 2x + 2
x³ + 4x² + 5x + 2 is your answer
hope this helps