The curved part of this figures is a semicircle.
What is the best approximation for the area of this figure?

28+16.25π units²

28+8.125π units²

14+16.25π units²

14+8.125π units²

The curved part of this figures is a semicircle What is the best approximation for the area of this figure 281625π units 288125π units 141625π units 148125π uni class=

Respuesta :

The answer is 14+8.125π units².

Answer: 14+8.125π units²

Step-by-step explanation:

By the given diagram,

The diameter of the semicircle = The line segment having the end points (-4,-2) and (3,2),

[tex]=\sqrt{(3+4)^2+(2+2)^2}[/tex]

[tex]=\sqrt{7^2+4^2}[/tex]

[tex]=\sqrt{49+16}[/tex]

[tex]=\sqrt{65}[/tex]  unit,

Thus, the radius of the semicircle = √65/2 unit,

⇒ [tex]\text{Area of the semicircle}=\frac{1}{2}\pi(\frac{\sqrt{65}}{2})^2[/tex]    

[tex]= \frac{1}{2}\pi(\frac{65}{4})[/tex]

[tex]=\frac{65\pi}{8}[/tex] square unit.

Now, by the given diagram,

The area of the triangle having the vertices (-4,-2), (3,2) and (-4,2)  ( By the coordinate form of area of a triangle formula )

[tex]=\frac{1}{2}[-4(2-2)+3(2+2)-4(-2-2)][/tex]

[tex]=\frac{1}{2}\times 28[/tex]

[tex]=14[/tex] square unit,

Hence, the total area of the given figure = Area of semicircle having diameter √65 + area of triangle having vertices (-4,-2), (3,2) and (-4,2)

[tex]=\frac{65\pi}{8}+14[/tex]

[tex]=(8.125\pi+14)[/tex] square unit.

Fourth option is correct.