Respuesta :
We will proceed to resolve each case to determine the solution.
we know that
[tex]2.5[/tex] m of pipe weighs [tex]10[/tex] kg
so
by proportion
Find the weighs of each case
case A) [tex]5[/tex] m of pipe weighs [tex]30[/tex] kg
[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{5}\frac{kg}{m}\\ \\2.5*x=5*10\\ \\x=50/2.5\\x=20\ kg[/tex]
[tex]20\ kg\neq30\ kg[/tex]
therefore
The statement case A) is False
case B) [tex]5[/tex] m of pipe weighs [tex]40[/tex] kg
[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{5}\frac{kg}{m}\\ \\2.5*x=5*10\\ \\x=50/2.5\\x=20\ kg[/tex]
[tex]20\ kg\neq40\ kg[/tex]
therefore
The statement case B) is False
case C) [tex]10[/tex] m of pipe weighs [tex]40[/tex] kg
[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{10}\frac{kg}{m}\\ \\2.5*x=10*10\\ \\x=100/2.5\\x=40\ kg[/tex]
[tex]40\ kg=40\ kg[/tex]
therefore
The statement case C) is True
case D) [tex]10[/tex] m of pipe weighs [tex]80[/tex] kg
[tex]\frac{10}{2.5}\frac{kg}{m}=\frac{x}{10}\frac{kg}{m}\\ \\2.5*x=10*10\\ \\x=100/2.5\\x=40\ kg[/tex]
[tex]40\ kg\neq80\ kg[/tex]
therefore
The statement case D) is False
therefore
the answer is
[tex]10[/tex] m of pipe weighs [tex]40[/tex] kg
Answer:
10 m of pipe weighs 40 kg
Step-by-step explanation:
If 2.5 m of pipe weighs 10 kg, then 10 m of pipe weighs 40 kg.
A proportional relationship exists when two quantities always have the same size in relation to each other.
2.5 /10 = 10 /40