contestada

Consider the quadratic expression given below.

Factor the following expression completely.

3x^2-30x-72

Respuesta :

[tex]3 x^{2} -30x-72=3( x^{2} -10x-24)[/tex]

Using cross multiplication method,

x                         -12       -12x

x                             2          2x  

[tex] x^{2} [/tex]                        -24        -10x

Therefore, 
[tex]3 x^{2} -30x-72=3( x^{2} -10x-24)[/tex]
                               =3(x-12)(x+2)

Answer:

The factor form of the given expression is 3(x-12)(x+2).

Step-by-step explanation:

The given expression is

[tex]3x^2-30x-72[/tex]

[tex]3(x^2-10x-24)[/tex]

The middle term can be written as -12x+2x.

[tex]3(x^2-12x+2x-24)[/tex]

[tex]3[x(x-12)+2(x-12)][/tex]

[tex]3(x-12)(x+2)[/tex]

Therefore the factor form of the given expression is 3(x-12)(x+2).