Respuesta :
[tex]3 x^{2} -30x-72=3( x^{2} -10x-24)[/tex]
Using cross multiplication method,
x -12 -12x
x 2 2x
[tex] x^{2} [/tex] -24 -10x
Therefore,
[tex]3 x^{2} -30x-72=3( x^{2} -10x-24)[/tex]
=3(x-12)(x+2)
Using cross multiplication method,
x -12 -12x
x 2 2x
[tex] x^{2} [/tex] -24 -10x
Therefore,
[tex]3 x^{2} -30x-72=3( x^{2} -10x-24)[/tex]
=3(x-12)(x+2)
Answer:
The factor form of the given expression is 3(x-12)(x+2).
Step-by-step explanation:
The given expression is
[tex]3x^2-30x-72[/tex]
[tex]3(x^2-10x-24)[/tex]
The middle term can be written as -12x+2x.
[tex]3(x^2-12x+2x-24)[/tex]
[tex]3[x(x-12)+2(x-12)][/tex]
[tex]3(x-12)(x+2)[/tex]
Therefore the factor form of the given expression is 3(x-12)(x+2).