Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = 6e^\big{5x}(5x + 1)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = 6xe^\big{5x}[/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle y' = \frac{d}{dx}[6x]e^\big{5x} + 6x\frac{d}{dx}[e^\big{5x}][/tex]
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle y' = 6\frac{d}{dx}[x]e^\big{5x} + 6x\frac{d}{dx}[e^\big{5x}][/tex]
  3. Basic Power Rule:                                                                                         [tex]\displaystyle y' = 6e^\big{5x} + 6x\frac{d}{dx}[e^\big{5x}][/tex]
  4. Exponential Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle y' = 6e^\big{5x} + 6xe^\big{5x}\frac{d}{dx}[5x][/tex]
  5. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle y' = 6e^\big{5x} + 30xe^\big{5x}\frac{d}{dx}[x][/tex]
  6. Basic Power Rule:                                                                                         [tex]\displaystyle y' = 6e^\big{5x} + 30xe^\big{5x}[/tex]
  7. Factor:                                                                                                           [tex]\displaystyle y' = 6e^\big{5x}(5x + 1)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation