Respuesta :

Brainly won't let me post the answer. I'll post it as a comment to this answer.

Answer:

The expression which represents this composition is

[tex][f o g o h](x) =-2(4x-10)^4[/tex]

Step-by-step explanation:

Given : [tex]f(x)=-2x^4[/tex] , [tex]g(x)=4x-6[/tex] and [tex]h(x)=x-1[/tex]

To find : The expression represents the composition  [f o g o h](x)  

Solution :

The composition is  [tex][f o g o h](x) = f(g(h(x)))[/tex]

So, first plug h into g.

i.e, [tex]=f(g(x-1))[/tex]

[tex]=f(4(x-1)-6)[/tex]

[tex]=f(4x-4-6)[/tex]

[tex]=f(4x-10)[/tex]

Next, plug in the new function into f.

[tex]=-2(4x-10)^4[/tex]

The expression which represents this composition is

[tex][f o g o h](x) =-2(4x-10)^4[/tex]