Respuesta :
Brainly won't let me post the answer. I'll post it as a comment to this answer.
Answer:
The expression which represents this composition is
[tex][f o g o h](x) =-2(4x-10)^4[/tex]
Step-by-step explanation:
Given : [tex]f(x)=-2x^4[/tex] , [tex]g(x)=4x-6[/tex] and [tex]h(x)=x-1[/tex]
To find : The expression represents the composition [f o g o h](x)
Solution :
The composition is [tex][f o g o h](x) = f(g(h(x)))[/tex]
So, first plug h into g.
i.e, [tex]=f(g(x-1))[/tex]
[tex]=f(4(x-1)-6)[/tex]
[tex]=f(4x-4-6)[/tex]
[tex]=f(4x-10)[/tex]
Next, plug in the new function into f.
[tex]=-2(4x-10)^4[/tex]
The expression which represents this composition is
[tex][f o g o h](x) =-2(4x-10)^4[/tex]