Answer: 0.9087.
Step-by-step explanation:
Given : Population mean : [tex]\mu=2.02\text{ liters}[/tex]
Standard deviation : [tex]\sigma =0.015\text{ liters}[/tex]
Here , the actual quantities dispensed vary and the amounts are normally distributed .
Let x be the amount of cola in container in liters :-
[tex]P(x<2)=P(\dfrac{x-\mu}{\sigam}<\dfrac{2-2.02}{0.015})\\\\=P(z<-1.33333)\ \ \ [\because\ z=\dfrac{x-\mu}{\sigma}}]\\\\= 0.9087\ \ [\text{Using P-value table}][/tex]
Thus , the probability a container will have less than 2 liters is 0.9087.