The given family of functions is the general solution of the differential equation on the indicated interval. find a member of the family that is a solution of the initial-value problem. y = c1e4x + c2e−x, (−∞, ∞); y'' − 3y' − 4y = 0, y(0) = 1, y'(0) = 2

Respuesta :

Try this option (see the attachment), if it is possible check result in other sources.
Ver imagen evgeniylevi

Solution:

The given differential equation is,

[tex]y=C_{1}e^{4 x}+C_{2}e^{-x}[/tex]------(A)

Differentiating once,with respect to x,

[tex]y'=4C_{1}e^{4 x}-C_{2}e^{-x}[/tex]-------(1)

Differentiating again with respect to x,

[tex]y"=16C_{1}e^{4 x}+C_{2}e^{-x}[/tex]-------(2)

Equation (1) + Equation (2)

y' +y" [tex]=20 C_{1}e^{4 x}[/tex]

[tex]C_{1}=\frac{y'+y"}{20e^{4 x}}[/tex]

4 ×Equation (1) - Equation (2)

4 y'- y"[tex]=-5 C_{2}e^{-x}[/tex]

[tex]C_{2}=\frac{4y'-y"}{-5e^{-x}}[/tex]

Substituting the value of [tex]C_{1},C_{2}[/tex] in A,we get

[tex]y=\frac{y'+y"}{20}+\frac{4 y'-y"}{-5}\\\\ 20 y=y'+y"-16 y'+4 y"\\\\ 20 y=-15 y'+5y"\\\\ 4 y+3 y'-y"=0[/tex]

As, y(0)=1 , and y'(0)=2, gives

[tex]C_{1}+C_{2}=1\\\\ 4C_{1}-C_{2}=2[/tex]

gives , [tex]5C_{1}=3\\\\ C_{1}=\frac{3}{5}\\\\ 5 C_{2}=2\\\\ C_{2}=\frac{2}{5}[/tex]

So, member of the family that is a solution of the initial-value problem, [tex]y=C_{1}e^{4 x}+C_{2}e^{-x}[/tex] is

[tex]5 y=3 e^{4 x}+2 e^{-x}[/tex]