Respuesta :

The first thing you should do in this case is to compose both functions:
 f (x) = x + 7
 g (x) = 1 / (x-13)
 Making the composition
 f (g (x)) = (1 / (x-13)) + 7
 f (g (x)) = (7 (x-13) +1) / (x-13)
 Answer:
 The domain of the function is:
 x other than 13
 (option 4)
The domain of a composite function [tex]f(g(x))[/tex] is, technically speaking, the set of those inputs [tex]x[/tex] in the domain of [tex]g[/tex] for which [tex] g(x)[/tex] is in the domain of [tex]f[/tex]. What this is really saying, though, is that the domain is for those [tex]x[/tex] that overlap in both functions, or that are defined for both [tex]f(x)[/tex] and [tex]g(x)[/tex]. You can write {[tex]x \ | \ D_f[/tex] ∩ [tex]D_g[/tex]}.

For this specific example, the domain of [tex]f(x)[/tex] is {all real numbers [tex]x[/tex]}. The domain of [tex]g(x)[/tex] is {[tex]x \ | \ x \neq 13[/tex]}. These overlap for all [tex]x[/tex] such that [tex]x \neq 13[/tex], so the domain of [tex]f(g(x))[/tex] is {[tex]x \ | \ x \neq 13[/tex]}.