Respuesta :
The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.
A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?
The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.
I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.
B <<<<====== answer.
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.
A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?
The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.
I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.
B <<<<====== answer.
Answer: The correct answer is option C.
Explanation:
Kinetic energy is the energy possessed by the an object due to its motion.An its calculated by:
[tex]K.E.=\frac{1}{2}mass\times (velocity)^2[/tex]
Kinetic energy depends upon the mass and velocity of the an object.
So, Paul can increase the bike's kinetic energy by increasing the velocity of its bike. Hence, the correct answer is option C.
Increasing the mass will also increase the kinetic energy . But according to option (D) he has to stop the bike first by applying brakes which will reduce the kinetic energy of the bike.And then again have to perform the work to bring the bike in motion