Respuesta :

[tex]ax^2+ay^2-bx^2-by^2+b-a[/tex]
=[tex]a(x^2+y^2)-b(x^2+y^2)+b-a[/tex]
=[tex](x^2+y^2)(a - b)+b-a[/tex]
=[tex](x^2+y^2)(a - b)-(a - b)[/tex]
=[tex](a - b)(x^2+y^2 -1)[/tex]
First, let's factor out the coefficient a. 

We have 

[tex]ax^2+ay^2-bx^2-by^2+b-a[/tex]

[tex]a(x^2+y^2-1)-bx^2-by^2+b[/tex]

Next, let's factor out the coefficient b.

[tex]a(x^2+y^2-1)-b(x^2-y^2+1)[/tex]

Using the common factor [tex](x^2+y^2-1)[/tex], we can rewrite as 

[tex](a-b)(x^2+y^2-1)[/tex]