Respuesta :

You can illustrate this with a Venn diagram

Answer with Step-by-step explanation:

We are given that two sets  A and B

[tex]A\subset B[/tex]

We have to prove show that [tex]A\cap B=A\cup B[/tex]

Suppose , x belongs to [tex}A\cap B[/tex]

Then , [tex]x\in A,x\in B[/tex]

Then, [tex]x\in (A\cup B)[/tex]

If, [tex]x\in (A\cup B)[/tex]

Then, [tex]x\in A or x\in B[/tex]

If [tex]x\in B[/tex] Then, it is not necessary that x belongs to  A .

If x belongs to A then

[tex]A\cap B=(A\cup B)[/tex]

If x does not belongs to A then

[tex]A\cap B \neq(A\cup B)[/tex]

But, if x belongs to A then x is also belongs to B because  A is a subset  of B.

Then, [tex]A\cap B=(A\cup B)[/tex]