Respuesta :
The volume of a cylinder is given by πr²h
r= x-3, while h =2x+7
Thus; volume = π(x-3)²(2x+7)
=π(x²-6x+9)(2x+7)
=π( 2x³-12x²+18x +7x²-42x+63
= π(2x³-5x²+24x+63) cubic units
r= x-3, while h =2x+7
Thus; volume = π(x-3)²(2x+7)
=π(x²-6x+9)(2x+7)
=π( 2x³-12x²+18x +7x²-42x+63
= π(2x³-5x²+24x+63) cubic units
It can be express as follows: v = π(2x³- 5x²- 24x + 63) cubic unit
The volume of a cylinder is given as follows
volume = πr²h
where
h = height
r = base radius
Therefore,
r = x - 3
h = 2x + 7
Therefore,
The volume can be express as follows
v = π × (x-3)² × (2x + 7)
v = π × x² - 6x + 9 ×(2x + 7)
v = π × 2x³- 12x² + 18x + 7x² - 42x + 63
v = π × 2x³- 5x²- 24x + 63
v = π(2x³- 5x²- 24x + 63) cubic unit
See similar problem here: https://brainly.in/question/2707561?referrer=searchResults