Respuesta :
f(x) = -x² + 4
g(x) = 6x
(g - f)(3) = 6(3) - (-(3)² + 4)
(g - f)(3) = 18 - (-9 + 4)
(g - f)(3) = 18 - (-5)
(g - f)(3) = 18 + 5
(g - f)(3) = 23
g(x) = 6x
(g - f)(3) = 6(3) - (-(3)² + 4)
(g - f)(3) = 18 - (-9 + 4)
(g - f)(3) = 18 - (-5)
(g - f)(3) = 18 + 5
(g - f)(3) = 23
For this case we have the following functions:
[tex] f (x) = 4 - x ^ 2
g (x) = 6x
[/tex]
The first thing we must do for this case is to subtract both functions.
We have then:
[tex] (g - f) (x) = g (x) - f (x)
[/tex]
Substituting we have:
[tex] (g - f) (x) = (6x) - (4 - x ^ 2)
[/tex]
Rewriting we have:
[tex] (g - f) (x) = x ^ 2 + 6x - 4
[/tex]
Evaluating the obtained function for x = 3 we have:
[tex] (g - f) (3) = (3) ^ 2 + 6 (3) - 4
(g - f) (3) = 23
[/tex]
Answer:
The value of the function evaluated at x = 3 is:
[tex] (g - f) (3) = 23 [/tex]