Respuesta :
--------------------------------------------------
Define length and width
--------------------------------------------------
Let x be the width
width = x
Length = 2x + 4
--------------------------------------------------
Formula
--------------------------------------------------
Perimeter = 2(length + width)
--------------------------------------------------
Find Length and width
--------------------------------------------------
62 = 2(2x + 4 + x)
62 = 2(3x + 4) ← combine like terms
62 = 6x + 8 ← remove bracket
62 - 8 = 6x ← minus 8 on both sides
6x = 54 ← swap sides
x = 54 ÷ 6 ← divide by 6 on both sides
x = 9 m
--------------------------------------------------
Find Length and Width
--------------------------------------------------
Width = x = 9 m
Length = 2x + 4 = 2(9) + 4 = 22 m
--------------------------------------------------
Answer: Length = 22m
--------------------------------------------------
Define length and width
--------------------------------------------------
Let x be the width
width = x
Length = 2x + 4
--------------------------------------------------
Formula
--------------------------------------------------
Perimeter = 2(length + width)
--------------------------------------------------
Find Length and width
--------------------------------------------------
62 = 2(2x + 4 + x)
62 = 2(3x + 4) ← combine like terms
62 = 6x + 8 ← remove bracket
62 - 8 = 6x ← minus 8 on both sides
6x = 54 ← swap sides
x = 54 ÷ 6 ← divide by 6 on both sides
x = 9 m
--------------------------------------------------
Find Length and Width
--------------------------------------------------
Width = x = 9 m
Length = 2x + 4 = 2(9) + 4 = 22 m
--------------------------------------------------
Answer: Length = 22m
--------------------------------------------------
We can translate these sentences into equations:
"The perimeter of a rectangle is 62 m"
[tex]\sf P=2l+2w[/tex]
[tex]\sf 62=2l+2w[/tex]
"The length is four more than two times the width."
[tex]\sf l=2w+4[/tex]
Now we can plug in what 'l' equals in the 2nd equation into the first equation:
[tex]\sf 62=2l+2w[/tex]
[tex]\sf 62=2(2w+4)+2w[/tex]
Distribute:
[tex]\sf 62=4w+8+2w[/tex]
Combine like terms:
[tex]\sf 62=6w+8[/tex]
Subtract 8 to both sides:
[tex]\sf 54=6w[/tex]
Divide 6 to both sides:
[tex]\sf w=9[/tex]
So this is our width, we can plug this into any of the two equations to find the length:
[tex]\sf l=2w+4[/tex]
[tex]\sf l=2(9)+4[/tex]
Multiply:
[tex]\sf l=18+4[/tex]
Add:
[tex]\boxed{\sf l=22~m}[/tex]
"The perimeter of a rectangle is 62 m"
[tex]\sf P=2l+2w[/tex]
[tex]\sf 62=2l+2w[/tex]
"The length is four more than two times the width."
[tex]\sf l=2w+4[/tex]
Now we can plug in what 'l' equals in the 2nd equation into the first equation:
[tex]\sf 62=2l+2w[/tex]
[tex]\sf 62=2(2w+4)+2w[/tex]
Distribute:
[tex]\sf 62=4w+8+2w[/tex]
Combine like terms:
[tex]\sf 62=6w+8[/tex]
Subtract 8 to both sides:
[tex]\sf 54=6w[/tex]
Divide 6 to both sides:
[tex]\sf w=9[/tex]
So this is our width, we can plug this into any of the two equations to find the length:
[tex]\sf l=2w+4[/tex]
[tex]\sf l=2(9)+4[/tex]
Multiply:
[tex]\sf l=18+4[/tex]
Add:
[tex]\boxed{\sf l=22~m}[/tex]