Consider the equations below. y = 200 + 350x y = 3x When x = 7, which equation has the greater value? Drag the equations into the correct boxes so that the inequality statement is true: ______  >  _____

Respuesta :

Let
y1=200 + 350x 
y2=3x

for x=7
y1=200+350*7----------> y1=200+2450------> y1=2650
y2=3*7--------------------------> y2=21

then y1 > y2
(200 + 350x) > (3x)

the answer is 
(200 + 350x) > (3x)

the solution of this inequality is
350x-3x > -200-----------> 347x > -200
x > -0.5764
the solution is the interval  (-0.5764, ∞)

Answer:

When x = 7, the first equation has the greater value.

Step-by-step explanation:

Substitute 7 in for x, so:

y = 200 + 350x ----------> y = 200 + 350(7)

y = 3^x ---------> y = 3^7

y = 200 + 350(7) = 2,650

y = 3^7 = 2,187

2,650 is greater than 2,187.

Therefore, [tex]y = 200 + 350x>y = 3^x[/tex].

Hope I helped, :)