In triangle TQS the length of the TS = [tex]2\sqrt{6}[/tex] units. Therefore the correct option is A).
Given :
- TS = 3x
- Triangle TQS and triangle TRS are right angle triangles.
Solution :
In triangle TQS applying pythagorean theorem.
[tex]\rm QS^2=TS^2+TQ^2[/tex]
[tex]\rm 18^2 = (3x)^2+TQ^2[/tex]
[tex]\rm TQ^2=324-9x^2[/tex] ---- (1)
In triangle TRS applying pythagorean theorem.
[tex]\rm TR^2+RS^2=TS^2[/tex]
[tex]\rm TR^2+12^2=(3x)^2[/tex]
[tex]\rm TR^2 = -144+9x^2[/tex] ---- (2)
In triangle TRQ applying pythagorean theorem.
[tex]\rm TQ^2=TR^2+QR^2[/tex]
[tex]\rm TQ^2=TR^2+6^2[/tex] --- (3)
Substitute the value of [tex]\rm TQ^2\;and\;TR^2[/tex] from equation (1) and (2) in equation (3)
[tex]324-9x^2=-144+9x^2+36[/tex]
[tex]432=18x^2[/tex]
[tex]x^2 = 24[/tex]
[tex]x=2\sqrt{6}[/tex] units
In triangle TQS the length of the TS = [tex]2\sqrt{6}[/tex] units. Therefore the correct option is A).
For more information, refer the link given below
https://brainly.com/question/2263981