Respuesta :
Answer: [tex]-i[/tex]
Step-by-step explanation:
You need to remember:
1. The Product of powers property: [tex](a^m)(a^n)=a^{(m+n)}[/tex]
2. The Power of a power property: [tex](a^m)^n=a^{mn}[/tex]
In this case, given:
[tex]i^{15}[/tex]
You need to follow these steps in order to simplify it:
1. Apply the Product of powers property:
[tex]i^{15}=i^{12}i^2i[/tex]
2. Apply the Power of a power property:
[tex](i^{4})^3i^2i[/tex]
3. Finally, since [tex]i^4=1[/tex] and [tex]i^2=-1[/tex], you get:
[tex]=(1)(-1)(i)=-i[/tex]
The simplified form of the complex power [tex]i^{15}[/tex] is [tex]-i[/tex]
The square root of any negative number leads to a complex number. For example:
[tex]\sqrt{-1}=i\\i^2=-1[/tex]
Given the complex expression, [tex]i^{15}[/tex]. This can be expressed as:
[tex]i^{15}\\=i^{14} \times i\\=(i^2)^7 \times i\\[/tex]
Substitute i² = -1 into the result to have:
[tex]= (-1)^7 \times i\\= -1 \times i\\= -i[/tex]
This shows that the value of the complex power [tex]i^{15}[/tex] is [tex]-i[/tex]
Learn more here: https://brainly.com/question/9303463