Respuesta :

pretty sure the answers are
x₁ = -2
x₂ = -8

Answer:

The solutions are [tex]-2[/tex] and [tex]-8[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} +10x+16=0[/tex]  

so

[tex]a=1\\b=10\\c=16[/tex]

substitute in the formula

[tex]x=\frac{-10(+/-)\sqrt{10^{2}-4(1)(16)}} {2(1)}[/tex]

[tex]x=\frac{-10(+/-)\sqrt{36}}{2}[/tex]

[tex]x=\frac{-10(+/-)6}{2}[/tex]

[tex]x=\frac{-10(+)6}{2}=-2[/tex]

[tex]x=\frac{-10(-)6}{2}=-8[/tex]

The solutions are [tex]-2[/tex] and [tex]-8[/tex]