Respuesta :
[tex]\bf \qquad \qquad \textit{direct proportional variation}\\\\
\textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby
\begin{array}{llll}
k=constant\ of\\
\qquad variation
\end{array}\\\\
-------------------------------[/tex]
[tex]\bf \textit{money varies directly with hourly rate of pay}\qquad \stackrel{money}{m}=k\stackrel{hour~pay}{h} \\\\\\ \textit{we also know that } \begin{cases} m=168\\ h=8 \end{cases}\implies 168=k8\implies \cfrac{168}{8}=k \\\\\\ 21=k\qquad therefore\qquad \boxed{m=21h} \\\\\\ \textit{now, when h = 6, what is \underline{m}?}\qquad m=21(6)[/tex]
[tex]\bf \textit{money varies directly with hourly rate of pay}\qquad \stackrel{money}{m}=k\stackrel{hour~pay}{h} \\\\\\ \textit{we also know that } \begin{cases} m=168\\ h=8 \end{cases}\implies 168=k8\implies \cfrac{168}{8}=k \\\\\\ 21=k\qquad therefore\qquad \boxed{m=21h} \\\\\\ \textit{now, when h = 6, what is \underline{m}?}\qquad m=21(6)[/tex]
$126 is correct. The hourly rate is $168/8 = $21, so the amount earned is (6)($21) = $126.