Respuesta :

it is the last answer you can tell by simplyfiying

Answer:

C. [tex]\dfrac{1}{(m-4)(m-3)}[/tex]

Step-by-step explanation:

First note that

[tex]m^2-16=(m+4)(m-4) \quad \text {and} \quad m^2-9=(m+3)(m-3)[/tex]

On the other hand, the expression from the question is equivalent to

[tex]\dfrac{m+3}{m^2-16} \cdot \dfrac{m+4}{m^2-9}=\dfrac{m+3}{(m+4)(m-4)}\dfrac{m+4}{(m+3)(m-3)}[/tex]

we cancel the equal terms in the numerator and the denominator and finally we get that our expression is equivalent to

[tex]\dfrac{1}{(m-4)(m-3)}[/tex]