Respuesta :
so the price was bought at 22,950, but the dealer is jacking it up to 23,750, the difference is 23,750 - 22,950, or 800 bucks.
now, if we take 22950 to be the 100%, what is 800 off of it in percentage?
[tex]\bf \begin{array}{ccll} amount&\%\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 22950&100\\ 800&p \end{array}\implies \cfrac{22950}{800}=\cfrac{100}{p}\implies p=\cfrac{800\cdot 100}{22950}[/tex]
now, if we take 22950 to be the 100%, what is 800 off of it in percentage?
[tex]\bf \begin{array}{ccll} amount&\%\\ \text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\ 22950&100\\ 800&p \end{array}\implies \cfrac{22950}{800}=\cfrac{100}{p}\implies p=\cfrac{800\cdot 100}{22950}[/tex]
Answer : The percentage markup is, 3.37 %
Step-by-step explanation :
As we are given that:
Sticker price of a car = $23750
Invoice price of a car = $22950
Now we have to determine the percentage markup.
[tex]\text{Percentage markup}=\frac{\text{Sticker price of a car}-\text{Invoice price of a car}}{\text{Sticker price of a car}}\times 100[/tex]
Now put all the given values in this expression, we get:
[tex]\text{Percentage markup}=\frac{\$ 23750-\$ 22950}{\$ 23750}\times 100[/tex]
[tex]\text{Percentage markup}=\frac{\$ 800}{\$ 23750}\times 100[/tex]
[tex]\text{Percentage markup}=3.37\%[/tex]
Thus, the percentage markup is, 3.37 %