Respuesta :

The  RMS  of O2  at  17  degrees   is  calculated  as  follows

RMs= ( 3RT/m)^1/2   where

R= ideal  gas   constant  =  8.314
T=   temperature=   17+273=  290 K
M=  molar  mass   in  KG =   32/1000=  0.032  Kg

Rms  is  therefore= sqrt (3x   8.314  x290/0.032 )  =  sqrt( 226036.875

RMs=475.43

The μ rms speed = 475,433 m / s

Further explanation

Gas particles move randomly (both speed and direction, as vector)

Average velocities of gases can be expressed as root-mean-square velocity. (μ rms)

[tex]\rm \mu=\sqrt{\dfrac{3RT}{M_m} }[/tex]

R = gas constant, 8,314 J / mol K

T = temperature, K

Mm = molar mass of the gas particles , Kg

μ rms = root mean square velocity of Gas Particles.,m/s

From this equation shows that the velocity of the gas is inversely proportional to the molar mass of the gas particles

μ ≅ 1 / Mm

So that the greater the molar mass of the gas particles, the smaller the speed (the slowest)

Oxygen gas molecule, O₂ has a molar mass: 0.032 kg / mol

T = 17 °C = 17 + 273 = 290 K

then:

[tex]\rm \mu=\sqrt{\dfrac{3\times8.314\times 290}{0.032} }\\\\\mu_{rms}=475,433\:\frac{m}{s}[/tex]

Learn more

kinetic molecular theory

brainly.com/question/7309727

The gas particle that travels the slowest

brainly.com/question/6027382

brainly.com/question/6852522