Respuesta :

g(x)=-f(x)-2
x=-2→g(-2)=-f(-2)-2=-(-1)-2=1-2→g(-2)=-1
x=-1→g(-1)=-f(-1)-2=-(1)-2=-1-2→g(-1)=-3
x=0→g(0)=-f(0)-2=-(3)-2=-3-2→g(0)=-5
x=1→g(1)=-f(1)-2=-(5)-2=-5-2→g(1)=-7

x       -2    -1   0     1
g(x)   -1   -3   -5   -7
Given the table for a linear function
f(x)={(-2,-1),(-1,1),(0,3),(1,5)}
Need to find g(x)=-f(x)-2

First step is to find f(x) in analytical form.
The slope-intercept form would be convenient because we can find both the slope and y-intercept.
In a typical linear function
f(x)=mx+c
m= slope, can be found by (y2-y1)/(x2-x1)
c= y-intercept  [value of y when x=0]

So here, taking points (0,3),(1,5)
m=(5-3)/(1-0)=2
c=3  [y-value when x=0]
=>
f(x)=2x+3
=>
g(x)
=-f(x)-2            [given]
=-(2x+3)-2       [don't forget the parentheses]
=-2x-3-2
=-2x-5  

Finally
g(-2)=-2(-2)-5=4-5=-1
g(-1)=-2(-1)-5=2-5=-3
g(0)=-2(0)-5=0-5=-5
g(1)=-2(1)-5=-2-5=-7
...